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This thesis examines the problem of optimal aiming at
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an imperfectly located point target and an area target in
which elements are uniformly or normally distributed. For
an analytical simplicity, a one-dimensional target is
considered and optimal aim points are determined when 2

rounds are fired.
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I. INTRODUCTION

A. BACKGROUND

Artillery weapons are a key element of the combined-arms
team for modern combat. Many studies and experiments have
been conducted to determine the effective use of artillery
weapons and have contributed to the establishment of employ-
ment doctrine for them. Such system-analysis work has in-
cluded the development of quite complex, detailed Monte-Carlo
simulations of artillery systems. Nevertheless, a simple
combat model may yield a much clearer understanding of impor-
tant relations that are difficult to perceive in a more com-
plex model, and such insights can provide a valuable guidance
for subsequent higher-resolution computerized investigations.

Moreover, one can use such a simplified-auxiliary model for

understanding the basic dynamics and behavior of a larger-scale

complex-operational model.

This thesis follows this research strategy and uses a
simple analytical model to investigate optimal aiming at an
imperfectly located target. Botha point target and also an
area target (in which target elements are uniformly or normally
distributed) are considered. For simplicity's sake, one-
dimensional models are considered. Therefore, the results
obtained here should not be taken literally but should be
interpreted as insights into optimal aiming in cases of more

practical interest. Thug, t ere are still many unresolved
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- problems concerning optimal aiming and the optimal expendi-

ture of ammunition (particularly in cases of uncertainty).

During the past twenty years, a large number of mathemati-
cal investigations have been carried out in two broad areas.
First, descriptive studies have investigated the effectiveness
of attacks on point and area targets by weapons having various
systematic errors and destruction capabilities. Second,
normative studies have investigated the optimal allocations
of weapons against a group of point targets and for the de-
fense of a group of point targets.

This thesis considers both these areas; it develops a
descriptive model of artillery fire effectiveness (i.e.,
develops an expression for engagement-kill probability), and
then it determines the optimal aim points (when two rounds
are fired) to maximize fire effectiveness. Both point ;nd
area targets are considered. 1In this thesis, a point target
is defined as a target whose size is small enough for it to
be killed by a single round (i.e., the target is very small
compared to the lethal area of a round). An area target is
defined as a target whose size is too big for it to be killed
by a single round (i.e., the target is much larger than the

lethal area of a round).

B. VULNERABILITY CONSIDERATIONS
Vulnerability {[l1: pp. 15.1-15.15] of a target may be
defined as the characteristics of a target, which describe

its sengitivity to combat mechanisms. Therefore, the

10
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vulnerability may be described as a function of the damage
producing properties of the attacking weapon and the physical
properties of the target. Thus, vulnerability involves
considerations of a stochastic or probabilistic nature, which
in turn will depend markedly on the conditions of both the
attacking weapon and the target in the combat environment.

Conventionally, vulnerability is expressed in terms of
an area of a volume for a given attack direction, for par-
ticular or specified conditions of the engagement of a weapon
against a target. Because of the stochastic nature of this
mechanism, it is necessary to describe the chance of damage
on the target in probabilistic terms. Specifically, the
probability of damage is determined by taking the wvulnerable
area of a target for given attack directions and dividing it
by the presented area, which gives tne conditional probability
that a hit is a kill; i.e., p(K|H).

The determination of vulnerable areas of a target may

be described as follows.
AX

/) oy

Fig. 1. Vulnerable Areas

A, = } 1 p(x,y)AxAy, where p(x,y) is the average chance of
Xy
kill for a cell. Thus, AV is a computed area obtained by

11
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b
ﬁ; weighting suitable small areas by the conditional chance

that a hit is a kill and summing those weighted cells over

:! A the whole presented area of the target.
Av
P(K[H) = .

This notion of conditional kill probability may be extended

to the case where a target is killed by the shrapnel of

artillery ammunition. It should be noted that determination

of Av is a long and detailed experimental process.

C. LETHALITY FUNCTIONS

Vulnerability is ordinarily a term used for the case
where actual hits are obtained on a target such e&s tanks and
aircraft. Lethality [l: pp. 15.1-15.15], on the other hand,
refers primarily to the case where lethal or incapacitating
fragments are projected over an area on the battlefield to
incapacitate personnel. An arfillery projectile is usually
detonated on the ground or in the air, and consequently
project lethal fragments over a large area. Such a projectile

can still be effective even if it deos not hit the target

; directly but merely detonates near the target.

EE In order to represent lethality in a functional form, the
% U.S. Army's Ballistic Research Laboratories have done exten-
E: sive experimental work for a large number of weapon-target

E pairs. Tt has been observed experimentally, by counting

d perforations in wood panels placed at various distances from

-
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the point of burst, that the number of fragments above a

specified threshold tends to decrease as an exponential
function of the distance from the point of burst. Since the
shrapnel kills by its kinetic energy, this leads to a

lethality function which is a negative exponential of the

[2: pp. 5.1-9.6] is defined as follows:

_ . a round detonates at
4(r) = pltarget kllledldistance r from the target)
2a
= e R

where a is a lethal range. It should be noted that this
lethality function depends on both the weapon system and
target type.

There appears to be no consistent or universally accepted

way of defining lethal range, a. The following are commonly

used.

o0

a = [ lr)dr
0

a = V/2/m [ a(r)dr
0

a 1is solution to 4(r) = .5.

So, when one is given a number as a lethality, he must find

out how it is defined. There is another type of lethality

13
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function called 'cookie cutter' which is defined as fcllows.

Pyl ["“'
N

Fig. 2. Cookie Cutter Lethality Function

D. ERRORS AND PROBABILITY DISTRIBUTIONS

1. Pattern of Impacts [l: pp. 13.1-13.12]

In the firing of artillery weapons, the results are
a two-dimensional pattern of impact points which exhibits an
amount of scatter depending on the locating error of target,
aiming error and ordinary ballistic dispersion. This two-
dimensional pattern gives rise to various measures of disper-
sion and these measures of dispersion include sample standard
deviation in each direction, extreme horizontal (vertical)
dispersion, the mean horizontal (vertical) deviation, and
the radial standard deviation, etc. It is important to note
that the expected values of these various measures of dis-
persion depend on the sample size or number of rounds. That
is, a group of several shots fired from a weapon represents

a sample of rounds from a lot of ammunition, or a population

14
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in statistical terms so that the scatter pattern will vary
from one group to another. It is this random variation for
us to model in order to estimate the probabilities of hitting
a target.

The round to round ballistic dispersion and the move-
ment of the center of impact during firing a group of rounds
affect the probability of hitting a target. As far as is
known, the round to round ballistic dispersion remains rela-
tively stable even though the center of impact may vary in
some unpredictable manner. It has been observed that for
the rifles fired at vertical targets pattern of impacts is
nearly circular, whereas for the case of artillery weapons
pattern of impacts is non-circular: i.e., dispersion in
the range direction is considerably gr=2ater than that in
deflection.

2. Probability Distribution fcr Errors [2: pp. 10.1-10.5]

We may think of the factors that affect the'impact
as being errors, and these errors, expressed as a misdistance,

are considered to be the sum of the following random variables.

misdistance = (Target location error + aim error) +
ballistic error

For convenience, all these errors are assumed to have proba-
bility distributions like, p(x < X < x+dx) = f(x)dx. Addi-
tionally, target location error may be combined with aim error

and called again 'aim-error'. These errors can be described

graphically as follows.

15
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T‘ (x350¥3;’
A(XaIYa)

(x,y)

0 X
* Target element is located at (x,y)

- aiming is realized at (xa,ya)

+ ith round lands at (xdi'ydi)

Fig. 3. Error Description

a. Distribution of Aim Error
The aim error, a random variable denoted as (xa,ya),

is normally distributed with mean (u ya) and standard
L ]

xa’ H

deviation (oxa,cya).

Probability distribution for X, 3

_l(xa-uxa)z
1 2 9%a
£lxg? VearO%a) = — ¢
Xa

Probability distribution for Yyt

Y. <H,. 2
3 (2-x3
1 0ya
f(y st wu, _,0 ) = ——e
a 'ya ya Y2Tm.q
ya
16




Joint probability distribution for (xa,ya):

)
+
) +( 5 3

1 e xa ya xa ya

%_ [ (xa-“Sca 2 - Hra, 2_20 .xa- “ea Yo" Wa,
] o, : :

4 (xa.ya) =

12
2mnepygﬁrp

o is a correlation coefficient between x, and Yy-
If it is assumed that p = 0 and Ova = cya =0,

then the joint probability distribution will be simplified

as follows.

X_=u 2 y_=u 2
FL2_Xa) , (a_¥a)
1 I%a c’ya

£(xy,) = —e

b. Distribution of Ballistic Error

Components of ballistic error, Dx and Dy, may be

defined as follows.

The ballistic error, a random variable denoted as (Dx'Dy)' is
normally distributed with mean (0,0) and standard deviation

(oxa,oya). Therefore, the random variables, X4 and Yqr are

normally distributed with (xa,ya) and standard deviation

17
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(cxa'oya)‘ The probability distribution for X3 is:

1, Xa"*a, 2
AR
f(xd: xa'cxd) = 1 e xd
Y2na
The probability distribation for Yq is:
.l(yd-ya)2
1 2" 9
f(yq: y.40.3) = ———e¢e :
yd

The joint probability distribution for (xd,yd) is:

_%{(xafxé\2+(yd‘ya\2 zp.xd a Yd ¥a 1d7a
. o 7 (4
f(ﬁyya) = 1 e xd yd O yd

2
ZnometYE-p

p is a correlation coefficient between Xg and Yg- If it is
assumed that p = 0, then the joint probability distribution

will be simplified as follows.

1, Xg7%3 2 Yg7¥, 2

f(x 'Y ) =T ee—
a’“d 2"°xd°yd

E. TARGET DENSITY CONSIDERATION
Target density is defined as the probability distribution

of elements in an area target.

18
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p(an element exists between x and x+dx) = g(x)dx

where g(x) is the density function of an elemen;. Target
density is involved where it is desired to obtain the expected
kill probability of an area target. This thesis examined

two cases of target density: i.e., one for the uniformly
distributed area target and the other for the normally dis-

tributed area target.
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II. BASIC MODEL

A. HIT PROBABILITY MODEL

1. One Dimensional Model

The chance of hitting a target is, in large, dependent
upon the aim error (with target location error! and the

delivery error.

77

Fig. 4. One Dimensional Hit Pattern

Here the assumptions are:
1. A firer aims at the center of mass (origin) but he
makes an aim error X,e
2. A round lands at Xq-

pSSHlxa = p(Hit|aiming realized at x,)

1 X.-x 2

L

d
~L /chd

-

If there is no bias in aim, X, = 0, and the standard deviation

of ballistic error is large as compared to target size, small

20
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target approximation will be as follows.

o - 2L
SSH l xa /I
d
2. Two Dimensional Model
Y ¢

/ (x,ry,)

Fig. 5. Two Dimensional Hit Pattern

Using the same assumptions as in the one dimensional

model, pSSHl(xa:Ya) will be defined as follows.

pSSH‘(xa,ya) = p(Hit|aiming realized at (x,,y,))
1, XaXa, 2, Ya¥a 2 Xg7X, Yg¥a
L Sl +5— =20 AP ]
xd
= [/ e yd ¥4 ax gy

A -
Zm%dgwgl o)

Here, A is the area of a target and p is a correlation coeffi-
cient between X3 and Yq- If there is no bias in aim, X, = ¥,

= 0, and (oxd'cyd) are large as compared to the size of a




target, and the small target approximation will be as

follows.

A

p 2 .
SSHI(xa,ya) E"Oxdoyd

For a rectangular target, o = 0.

X.=X_ 2 y.- 2
S8 ()T
p = ff i e Cxa Pya g g
SsH| (x,,y,) A 2"9,q%4 d—d
For a circular target, p= 0, x, =y, =0, and 0,4 = 0 4 = 04.
2, 2
1 Xa*¥q
-5 )
Pss|x .y = JJ _21 e “a  axgdy,
a'¥a I\Z‘n’O’d
L8
2 52
= 1 -e dl

where R is the radius of a circular target.

B. KILL PROBABILITY MODEL

l. One Dimensional Model

The chance of killing a point target is dependent

upon the chance of a hit, the damage mechanism of the projec-

tile and the vulnerability of a target. For developing a
model, Gaussian lethality function is used instead of cookie
cutter type lethality function, and this will lead to a more

tractable analytical result.

22
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® . a round lands a round lands be~
B = | pltarget killed| -p( ) dx
&ﬂqxa ! giamixa«b% tmaalﬁiamixaﬂka d
1 xd 2 1 :-:d-xa 2
o -7(5;) -2-(-?‘—)
= ] 5(xg) £lxg: X ,0 dx, = /_c L e dx

Simplifying the above formula, the following result is obtained.

2
32y
3
Pgsk |x_la: 9-2-9.4] = —2 o 2793 (1)
a Valeg?

2. Two Dimensional Model

Two dimensional model is simply an extension of the

one dimensional model. Assuming there is no interaction
between X3 and Yqr pSSK|(xa'Ya) will be as follows.

2 2

X ::‘2 Xd3%\2 1 %iya

oy © f[( "’( (4 ] 2 —‘T
1 Ixd yd e a dﬁfwa

pSSK|( ,Ya = !co [-oo 2TO'xddyd

Simplifying the above formula, the following result is obtained.

x2 2
l( a_ . yé )
32 7 a "'°xd a2+cyd (2)

Pssk |(x_,v.)
(¥, v a§+cxd§ \/a?myd2

For the case of circular normal ballistic error,

Ogd = Oyq = Og- then

23
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P = == e
ssxl(xa,ya) a2+°§

If there is no aim error, X, Ty, = 0, then

2

a
P = = P =0'P =
ssxl(xa,ya) azlgg ssxlxa-o ssxlya-o

1t indicates that the two dimensional kill probability is
just the multiplication of the one dimensional kill probabili-

ties in this simple case.

24




III. SALVO FIRE MODEL (POINT TARGET)

A. INTRODUCTION

Sometimes, it is not possible to destroy or neutralize
many targets with single round because hit probabilities
may be too low, some targets maybe too large in size, rela-
tively invulnerable, or lethality per round is often insuffi-

cient. In these cases where the kill probability per round

o is too low, several or many rounds must be fired sequentially

L at a target or with some pattern of aiming dispersions, if

E! suitable damage is to be accomplished. 1In this chapter, kill
3 probability models of salvo fire (firing n rounds sequen-

tially at the same aim point) will be examined.

B. ONE DIMENSIONAL MODEL
Assumptions used in this model are:
1. Aim errors and delivery errors follow normal distributions
as defined previously.
2. A firer engages a target with center of mass at the
origin.
3. Use a common aim point for n rounds.
4. Use Gaussian lethality function.
5. Cumulative damage is negligible.
6. Sequential delivery errors are independent.
The salvo kill probability of n rounds is defined as follows:

pKIXa(n) p(kill target with n rounds|aiming realized at xa)

n
=1-(1- pssx|xa)
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Since pSSKIx was given in the previous chapter, unconditioning
a

the above expression on aim point X, gives the following

result.
n K-1
P [2: 10.10-10.15] = a: ] (1) (—=2) N —
k=1 Va§+o Z Va2+oc21+Kc§
K 2
1 Ha
2 a +0d+KOa
‘e (3)

Examination of this result indicates that pK(n) has maximum
value when My, = 0; i.e., when a firer makes no aim error,

pK(n) has the following value.

n K-1
pgm = a I —=2o .
K=l 2+0'd vVa +Ud+K0§

C. TWO DIMENSIONAL MODEL

It has been observed in the real world that observers
tend to have a greater aim error in range than in deflection,
and this greater range dispersion can also be seen in ballis-
tic errors. Hence, it is desirable to develop a two dimensional
model in which the probability distributions of random variables

, and

are elliptical normal; i.e., Mya # uya' Ova # oya

Ovd # oyd' The assumptions from the one dimensional model are

used again, and additional assumptions are necessary.
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1. There is no interaction between X, and Ya-

2. Gaussian lethality function

2 2

a

L(xr) = e

where (Xx,y) is the location of target and it is the

origin here.

(n) = (kill target withlaiming realized)
pKI(xa,ya) n rounds at (x_,y,)

n

1-a ~ Pgsk| (xa,ya))

Since pSSK[(x was given as Equation (2), unconditioning

a’ya)
the above formula on aim point (xa,ya) gives the following

result.

- " _ n
Pgin) = 1 {m {ﬂ» (1 pSSKl(xa:Ya)) £(x,,y,)dx dy,

Substituting pSSKl(x and simplifying the above expression

a’ya)
leads to the following result.

2 K-1
B ) = Z()(-l)(zz =)t L
k=1 3

\/a +g xd\/a +0 Yd , J +0' +KO' 2\/a +C yd+KO'ya

“xa Hya

7‘2 > -7t T )

+Ko a“+0~ +Ko

‘e xd Xa yd Tvya (4)
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9, i.e.,

e
=
g
o
V]
n
[
I
u
»
-
:
<
o
[
[}
(]
£
o 3
0
s
=
]
-
L}

lya

pe(n) = Z()(-l)( 2 )

Sk Va2ia2  Valig?

a2 1 )
2

Va21o? k02
a xd+K0 ‘/a +0yd+K0y

If Oga = O© = cd and Hya = uya = 0 in (4), then

(n) z ) (-1 a? &2 1
Py (N = (-1) (-5—-7) ca“ -
K a +c a +c:d+Kcra

This result is identical to the case where the pballistic

error follows a circular normal distribution.
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IV. OPTIMIZATION OF KILL PROBABILITY

A. INTRODUCTION

So far, probability models for single shot and salvo fire
against a point target have been examined. It has been ob-
served that these kill probabilities are dependent upon
various parameters and assumptions, and the salvo kill proba-
tility is dependent upon the single shot kill probability.
Therefore, it is attempted in this chapter to examine the
relationships between parameters that maximize the single
shot kill probability.

Since the two dimensional model is an extension of the
one dimensional model, complicated to handle, and the result
of the one dimensional moéel can be linked to the two dimen-
sional case without much difficulty, the one dimensional model
will be examined. It has been assumed that a firer knows
the exact location of a target, but it is not always true
in the real world. Before going into the case of the unknown

target location, the case of the known location of a point

target will be first examined.

B. KNOWN TARGET LOCATION

The single shot kill probability was defined as follows.

a
P = —
SSK ‘ xa \/;—2-:?
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d *a
Sm— p = - . p
dx, “ssK|x 22 + °d§ SSK|x

For some fixed value of a and Ogqr moving X, (realized aim
point) away from the target center of mass always reduces

the kill probability.

2
a %9 Xa
Pc~ = ( - 1) ‘P
acd S.:K[xa a2-+o§ a2_+c§ SSKIxa
2
For the first derivative to be positive, (—2—2a -1) > o0,
a +dg

i.e., d

It is interesting to note that as o4 gets bigger, there is
some threshold in X, beyond which the single shot kill

probability increases.

C. UNKNOWN TARGET LOCATION

This is the case, for example, that a firer engages a
target of which the center of mass is believed to be located
at the origin but the true center of mass is located at X

the distance from the origin.

Fig. 6. Bias of Target Location
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The same assumptions for the basic model are used again.

The lethality function needs to be modified as follows.

- I L t ann 200
'”Eifi'””";“'-"“”
3 R -},4 .
- . P L B

L fam % 2
g(r) = e 2 2

Therefore, the single shot kill probability may be defined

as follows.

Pgsk| x
a

Evaluating this integral gives the following result.

1l (xa“xﬁ)
27T 2
a a -+cd

P = —
SSK|x
I a Ja2-+c§

This is the probability that a target located at X, will be

killed by a single round of which the aiming point is realized

at xa.
d_ . _ _faTX% .
dx, TSSK|x, a2-+03 SSK|x,

For some fixed value of a and 94 in this case, the single
shot kill probability becomes maximum when a firer happens

to aim at the true center of mass; i.e., as (xa-xz) becomes larger,
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the kill probability decreases. There comes up a gquestion
%i of how a firer can get X, close to the true center of mass,
Xo o in a situation that there exists an uncertainty in the

b - location of a target; i.e., x, is unknown. There seems to

L
& be no way of shortening (xa-xz) with a single round. Thus
!l it is clear that one can not expect the desired effect by hit

3 or close hit with a single round.

(e 2 ol

One way to solve this problem would be the adjusting fire

(1: pp. 14-3] . By adjusting fire it is easy to make x
a

close to X . It can also be shown that adjusting fire is

s 2 B B ated
e e
S P

more effective than salvo fire. Salvo kill probability for

this point target of unknown location will be summarized as

follows:
. 2
l.K(XR-“a)
n K-1 2 Qhoaﬁw
_ n K a 1 d a
pK(n) = Z (K) (=1)"( ) ‘qr—ce
k=1 v azmg v a2+o§+Ko§

Here, the term (xz-ua) is fixed during the entire period of
salvo fire, whereas it is decreased for each successive round
in adjusting fire.

Another way to solve this problem would be the pattern
fire with artificial dispersion of aiming points, but this
method still raises the guestion of how far those aiming points
should be separated from one another. These two sugtestions

(adjusting fire and artificial dispersion of aiming points

32
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for a point target of unknown location) may deserve another
area of investigation. The latter will be investigated in
a simple case where n = 2 in the next chapter.

It is noted that this model of unknown location may be
viewed in a different way with a slight modification of assump-
tions used. If we assume that the origin is true center of
mass of an area target with a specified size, -L to L, and
X, is simply the location of an element, then pSSlea beccmes
the probability that an element located at x, will be killed

L

by a single round of which aiming point is realized at X,

This concept may be shown in Fig. 7.

VW )

L

-L 0 x x, x
a

da "L

Fig. 7. Extension of Concept of Unknown Point Target
to an Area Target
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V. ARTIFICIAL DISPERSION OF AIMING POINTS

A. INTRODUCTION

There have been many attempts to improve the effective-
ness of artillery fire by dispersing aiming points arti-
ficially. However, finding an optimal dispersion is really
a complex problem for which a general solution is not yet
available for all cases of interest. As an extension to
the last chapter, the case of an imperfectly located point
target will be examined and then the case of an area target
in which elements are uniformly or normally distributed
will be examined. One dimensional models will be investi-
gated. For a general solution, n optimal aiming points must
be eobtained but it is almost impossible analytically. So,

the solution is restricted to the case where n = 2.

B. IMPERFECTLY LOCATED POINT TARGET ([3]
Assumptions are as follows.

l. A firer engages a target with unknown precise location

x, 2
54
f(xz;O,cl) = 1 e .
/5?62

2. n rounds are fired at distinct aiming points

(ul,uz,...,un)

3. distribution of delivery error for the i-th round is:
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1 xd-ui 2
“3 (=)
f(xd;ui,cd) = L e d
/7de
4. lethality function is:
-i(xd-xz)Z
2 a

2(r) = e

5. cumulative target damage is negligible.

kill a target;aim at u. for
pSSK[xl,ui P at xg Ii—th roufd

2
1 (uy=x%p)

J-2. 2
a +od
For n rounds, aimed at (ul,uz,...,un),

n
pK]xz,(ul,uz,...,un) 1- izl(l - pSSK|x2,ui)

i

over x, results in:

ditioni
Unconditioning of PK|(ul,u2,...,un) 2
2
-%.(ui—xl) 1% 2

L " ina-—2 TN
D = ]a- I (le———e )le
Kl(ul’uZ""’un) /TTTC - i=]l ‘

2 a+0d
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ﬁ. Assuming n = 2 and u, = -u, = ||
EU. 1. u2
. TEE
pK|u1,u2 = pK(u) = ———e¢e
Vaawsmg
2 a 4o
- a e d

2
94

Lt' Val +02\/a +20

The problem is to find u that maximizes pK(u).

1 u? .__uz
2 2, 2. 2 2 2
g'ﬁ P () = -2au a 40ty + 2a2u e a *od
K N 2.2 2372°¢
(@™gy+04) (a2-+02)3/2 2+202
d 4
increasing >
Pg(u) is | extreme at u, when pk(u)( =) 0.
decreasing <
a2+031 og u
By puting A = 5~ B = ~3 and v = 5}’ inequality can be
a
seen in an easy wa&.
increasing < 3/2
pg(u) is ( extreme ) at u, when v2 (=) 2(%;EL;Q+A) (A+1)
decreasing > /EITA/Xxi

Let v increase from 0 to ». If inside of the logarithm is less

than one, then pK(u) always decreases as u increases.

:

P
ke
\
'-.-_' - o N ~ . o
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pk(u) = 0, when u = 0, or

b2 = 2(14B) (1+A) ,  (A+l) 3/2
- (A+2)B n
. VB+1AVA+2

In this case the optimal will be at u = 0, i.e., it is better
not to disperse aiming points.

If the inside of the logarithm is greater than one, then
we have first <, =, and finally > in the above inequalities.
That is, pK(u) is first increasing, at extreme, and then de-
creasing. In other words, pK(u) is at a maximum when the
relationship = holds. So, the optimal dispersion of two
rounds for an imperfectly located point target will be at

the following points,

al = o ((l+B) (1+8) , (a3 )1/2
a\ B BiL1AZ(ar2)

These results suggest that when one doesn't know the location

of a target precisely, bracketing a target would do better.

C. AREA TARGET

1. General Model Description

Examination of an area target involves additional
considerations of the distribution of elements and the size
of a target. Before going into the specific cases of uniform

or normal distribution, a model of an area target will be

developed.
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Fig. 8. One Dimensional Area Target Description

Lan 2 ot

Additional assumptions to those used in the previous section

are:

‘. l. x is the location of an element of an area target

(known location)

2. the center of mass is the origin
3. --W0 to W0 is the size of a target

4. ¢(x) is the probability distribution of elements.

- (an_element at x)a round denotes at X3)
pSSK|x,xd,ui P "will be killed 'with aiming at u,
X-X, 2
-5(—%
= l(x-xd) = e

- (an_area targetla round detonates at x,,
PssK|xg,u; will be killed'with aiming at u,
W 1 ¥"%X4 2
0 =5 {—)
= g(x) -e dx
_Wo
area target .
PsSK |u, (will be killeqlaiming at u;)
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-u, 2
X-x. 2 1 %37
f°° jWO -%—(-—ad) 1 7 cd)
p = gi(x)e . —e dxdx
SSK|u; —o W /Tro d
0 d
Manipulating inside of the double integral,
X~u, 2
W 1 X X3 2 _j_.( d i
(gt 2 ® ,° ‘a
P = g(x ;] e e ax . ldx
SSKlup g /Fod d
%o
= {w g (x) "Pssk|x,u dx
0

Posk|x, u,

v 32+02

d

This conditional probability is the same as that developed in

the case of an imperfectly located target. Thus,

-1‘ (x-ui) 2

WO a 2 a2+oc21
p = gix)*—=2—— e dx (5)
SSK |u; ~W, 2
2
For n =2, p 1 - 1T (1 P ) (6)
K]u]_,u2 i=1 SSK!ui
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Simplification of equation (5) is not easy because of the
sharply defined area, -W0 to Wo. Thus, an approximation
procedure will be introduced.

2. Diffuse Target Approximation

By replacing sharply defined area target by a diffuse
target, evaluation of the integral in (5) becomes easy. It
doesn't cause any great differences in the result. As to
the function which expresses this continuous variability of
the effect on a diffuse target, it is proposed to use a

2 ,..2
Gaussian distribution, e * A0

Fig. 9. Diffuse Target Approximation

This modification can be supported by the following arguments.
Discrepancies in two areas can further be decreased by

adjusting W so that the two areas be equal.

0 2,2
dx = f X /W ax
= = 2 =
W, =W VT W = = W, 1.13 W,
40
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1 This numerical result (i.e., nearness of the factor 1.13 to
: 1) indicates that such an adjustment of W is nct likely to
RS cause a great change and the approximation need not at ail
E be more remote from reality than the original situation if
. further possibilities are taken into consideration. For
F! example, if the width W0 of a target .is not precisely known,
:: if Wo is not sharply defined because of irregular shape of
Er' the target, etc.

3. Uniform Distribution of Target Elements

- In this, the distribution of the elements, g(x) = 5%—
o 0

| (xmup?
{ W "7
0 a +o
1 a d
Pssk|u, = - J, ——=© dx
. 0 -¥Wg Vai+o§
2
I S {
2 2, 2
© a“+o 2,.2
= 2* ] a e 4 ., =-x°/w dx
0 == Va2+o§
L‘ Evaluating this integral leads to the following result.
3
1 w?
- _ i
5 1 o w2+2(a2+o§)
& Pssk|u, = : e
S * /2% Jﬁ2+2(a2+cé)
2
{
=
-
= 41
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Considering the case where n = 2,

u?
1

) ;§+2(a2#«g)

)

2 1 aW/m

nmn(l - -
i=l WG Vite2 (@249 dz)

1-

pKlulpuz =

Assuming that u; = -u, = |u|,

I
W/— W2+2 (a2+o§)
= {(w = awn (2e
PRlww T K 7
/fwo\/wz+z (a%40 )
- -4§£;r‘7‘
i . W2(a 403 |
/Ewo\/ W2 (a2+og)
pK(u) = pK(-u)

There comes up a question of what values of u give the maximum

pK(u).
2
_ u
;? 2 2
4w o WA . -4u +2(a"+0y)
du Pk W = /;? 2. 2 \fﬁ2052025 ¢
YN +2(a +od) d
- 2u2
az+2(a§+o§)
. 4aWymu o d)
¢§Wb(wz+2(a2+o§))3/2
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increasing
It is clear that pK(u) is ( extreme ) at u, when
decreasing
>
pi(u)( =) 0; i.e., when
<
>
[W2+2(a2+o§)] &n awy/m (=) u2
2 <

/§W0Jh2+2(a2+a

Let u increase from 0 to ». If inside of the logarithm is
less than one, then a relationship < holds; i.e., pK(u) is
always decreasing as u increases. In this case, it is not
proposed to disperse aiming points. If the inside of the
logarithm is greater than one, we have first >, =, and finally
<. But this never happens because the inside of the logarithm

is always less than one; i.e.,

awvym av2

2
&

/iwo\/w2+2 (a’+o Vil+2 (a2+o§)
This result suggests one should aim at the origin instead of
dispersing aiming points.

This suggestion contradicts the intuition that some
dispersions of the aiming point might achieve greater kill
of an area target. That is, if the model is considered in
terms of cookie cutter lethality function, then it is clear
that some dispersions, |u|, would do better than 2 rounds of
impact on the same point (origin). This contradiction is

mainly due to the assumption that cumulative damage is
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negligible, that is, once killed elements can be killed

again, and also the Gaussian lethality function.

S

Fig. 10. Cookie Cutter Drops on Uniform Tarcget

As a treatment to this problem, a suggestion is
possible. The lethal effect of 2 rounds detonated at the
same point will be approximately the same as that of oune
round, looked at from the mathematical point of view.
Therefore, it is suggested that one round be aimed at the
origin u; ., and then the aiming points be dispersed such taat
u, and ujy in Fig. 11 be the centers of the surviving area

target, b to W0 and a to -WO, and so on.

Fig. 1l1. Suggestion for Uniform Target

4. Normal Distribution of Target Elements

In this case, the distribution of the elements of an

area target (linear) is as follows.
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> 1 1N
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Evalutating this integral leads to the following result.

2.2 2
(2ox+w2) ut

1
22 2. .2 2
. (a*+02) (20x+W2)+W20x

aw .
V(@402 (20248 0

pSSK[u.
i

Considering the case where n = 2,

2 2
(20x4-W2 ) uy

1
2 .2 2 .2 2
2 (a +od) (2<7x+\‘102)-f-wzcx

1-1(- an e

PRy ,u, .__
2% i=l (a2+o§) (20i+w2) +Wjoi

assuming that u, = -u, = |uf,
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aw

Bl u, - B =
1% V (a402) (20 205%) 4402
X X
L (2‘:)2‘+wz)u2 L 2(oi+wz)u2
2 2.3 2 2 2T 2 32 2 2. 2
. e (a*+03) (zcxﬁz)mzcx i (a*402) (20245 )+w20x
- —e
Y NP 3 )
\/(a +cd) (20x+w2)+w20x
pK(u) = pK(-u)

There comes up a question of what values of u give

the maximum pK(u) .

d aw
& W =
2, 2 2 2
Viabd) (20x+W2)+W20x
| 1 (20}2‘+w2)u2
2(20}2{+W2)u 2 (a2+c<21) (20}2(+w2) +W20>2(
x (= —_— e
(a2+cc21) (20i+tfr)+w20i
1 2(20)2‘+w2)u2
2aw(20i+v12)u Z (a2+odr)(20)2(-1»&?2)#«12 °:2<
+ e . )
[(a+2) (202H) 4P 2]/ 2

increasing

It is clear that pK(u) is ( extreme ) at u, when
decreasing

>
'(u) {=) 0; i.e.,
Pk (<)
2[(a2+o§) (20,2‘4-w2)+w20,2(] o > 5
in (=) u
2
2 9% *+ w2 ‘/(azﬁgg) (20?‘+er) +W2 03 <
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Let us vary from 0 to ». If the inside of the logarithm is
less than one, then a relationship < holde; i.e., pK(u) is
always decreasing as u increases. In this case, it is not

proposed to disperse aiming points. If the inside of the

logarithm is greater than one, we have first <, = , and finally

>. But it never happens because

aw

S22 2. .2 2 2
(a +cd)(2ox+w ) +W od

This result suggests one should aim at the origin instead of
dispersing aiming points.

This suggestion contradicts with the intuition that
some dispersions of aiming point might achieve greater kill
of an area target. That isg, if this model is considered in
terms of cookie cutter lethality function, then it is clear
that some dispersions, |u|, would do better than 2 rounds of
impact on the same point (origin). This contradiction is
mainly due to the assumption that cumulative damage is negli-
gible and also the Gaussian lethality function. Probability
distribution of elements may also contribute to this result

of |u| being close to the origin.

/r | g (x)

Fig. 12. Cookie Cutter Drops on Normal Target
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As a treatment to this problem, a suggestion is
possible. The lethal effect of 2 rounds detonated at the
same point will be approximately the same with that of one
round from the mathematical point of view, rather than from

the real point of view. Therefore, it is suggested that one

round be aimed at the origin (center of mass), u, ., and then
disperse the aiming points, u, and u, for the remaining

elements as shown in Fig. 13.

Fig. 13. Suggestion for Normal Target
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VI. CONCLUSIONS

For a point target of known location, aiming at the center
of mass achieves greater chance of a kill. For a point
target of unknown location, adjusting or pattern fire would
do better, but salvo fire is not effective. For an area
target in which elements are uniformly or normally distri-
buted, it is suggested to aim at the center of mass and
thereafter to disperse the aiming points for the surviving

elements of the target.
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